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Exact solutions for a distributed parameter system are of great use for the
physical understanding of the system or the sensitivity analysis and design of the
system. However, exact or closed-form solutions for multi-stepped rotor-bearing
systems with distributed parameters have been rarely investigated. The present
paper proposes a modelling and analysis method to obtain exact solutions for
multi-stepped rotor-bearing systems with distributed parameters. To this end,
a modelling procedure to obtain an exact dynamic matrix for a Timoshenko shaft
element is presented by using a spatial state equation and the Laplace
transformation. The assembling procedure for constructing the global matrix can
be accomplished in the same manner as the "nite element method. The proposed
method can readily provide exact eigensolutions, frequency responses and
unbalance responses for multi-stepped rotor-bearing systems with distributed
parameters. Three numerical examples are also presented for validating or
illustrating the proposed method. The numerical study shows that the proposed
method is very useful for the analysis of rotor-bearing systems.

( 1999 Academic Press
1. INTRODUCTION

Although the dynamics for rotor-bearing systems can be well represented by
a partial-di!erential equation of time and axial co-ordinate as already available in
the literature, it does not seem to be easy enough to solve the equation or account
for complex shape and boundary conditions of actual systems. Consequently,
dynamic analysis for a complicated system relies solely on a numerical procedure
dealing with matrices that are acquired through discretization of distributed-
parameter system equations into approximate, "nite degree-of-freedom (d.o.f.)
system equations. Among discretization methods available for rotor-bearing
systems, the transfer matrix method (TMM) [1}4] and the "nite element method
(FEM) [5}9] have been preferably employed. Especially, the FEM has been an
indispensable tool by virtue of remarkable advance in computer technology.
However, there still remains the problem of quantifying the errors associated with
discretization. On the other hand, exact solutions for a structural dynamic system
are of great use for the physical understanding of the system or the sensitivity
analysis and design of the system. Many researchers have studied the rotor
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dynamics with the analysis of a simple, distributed-parameter rotor system in order
to understand fundamental features of rotating machinery [10}13]. However,
exact or closed-form solutions for multi-stepped rotor-bearing systems with
distributed parameters have been rarely investigated.

Recently, Yang and Fang [14, 15] presented an interesting method to obtain
exact and closed solutions for distributed parameter rotor-bearing systems by using
the distributed transfer function synthesis (DTFS) technique. The concept and
derivation procedure of the DTFS is believed to be useful for the modelling and
analysis of distributed parameter rotor-bearing system. However, the resultants for
rotor-bearing systems seem to be very complicated because they include 8]8
distributed transfer function matrices that should be integrated over the length
of the shaft element. In this paper, an improved modelling method is suggested
that can provide exact and closed form solutions for multi-stepped,
distributed-parameter rotor-bearing systems. A comprehensive modelling
procedure to obtain an exact dynamic matrix for a uniform Timoshenko shaft
element is presented. First, a spatial state equation is constructed for a Timoshenko
shaft model, which contains gyroscopic moment, rotary inertia and shear
deformation. Second, Laplace transformation is applied to the state equation with
respect to time. Then the state equation is Laplace transformed once more with
respect to the spatial co-ordinate. Inverse Laplace transformation, after resolving
the inverse matrix formula, for the resulting equation with respect to the spatial
co-ordinate, leads to an exact transfer matrix between the boundary values at one
end and the values at an in-between point of a shaft element. Substitution of the
other boundary values for the shaft element into the resulting equation and
rearrangement of the variables yields an element dynamic matrix, which can be
thought of as an exact dynamic element matrix for a uniform Timoshenko shaft
element. In particular, the use of complex co-ordinates in the formulation makes it
convenient to derive the exact dynamic element matrix for the shaft element.
Laplace domain equations for the other two essential elements, i.e., bearing and
rigid disk elements are also derived. The assembling procedure for constructing the
global matrix can be easily accomplished in the same manner that the global mass
and sti!ness matrices are constructed in FEM. The complex conjugate equation of
motion for the uniform Timoshenko shaft element is also constructed and
assembled simultaneously to take into account the anisotropy in the system. The
proposed method can readily provide exact eigensolutions, frequency responses
and unbalance responses for distributed-parameter rotor-bearing systems.

The proposed method has several advantages. The most important feature of the
method is that the method can deliver exact and closed-form dynamic solutions for
multi-stepped, distributed parameter rotor-bearing systems. A great reduction for
the system matrix size is also expected due to the facts that a uniform shaft segment,
regardless of the length, can be modelled by an element and that most rotating
machinery are composed of a few uniform shaft segments. The parametric study
with changing parameters for any uniform shaft section can be easily accomplished
through the proposed method, di!erent than the FEM, which requires re-meshing
to adjust properties of every element relevant to the parameters. Three numerical
examples are provided. In the "rst example, the proposed method is compared with



DYNAMIC ANALYSIS OF ROTOR-BEARING SYSTEMS 771
the FEM from reference [7]. In the second example, a two-stepped rotor-bearing
system problem is considered to illustrate the advantage of the proposed method in
design. In the "nal example, the proposed method is applied to a general,
multi-stepped rotor-bearing system to show the applicability of the method. The
numerical study shows that the proposed method is very useful for the dynamic
analysis or design of rotor-bearing systems.

2. MODELLING

2.1. MODELLING OF TIMOSHENKO SHAFT ELEMENT

A Timoshenko shaft model is shown in Figure 1. The equations of motion for the
Timoshenko shaft, which contains gyroscopic moment, shear deformation and
rotary inertia, can be written in complex co-ordinates as
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, (1)
Figure 1. Timoshenko shaft.
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where p and / are the complex, transverse and angular displacements respectively,
de"ned as

p"y#jz, /"h
y
#jh

z
.

In addition, f and m are the complex shear force and moment respectively, de"ned as

f"f
y
#j f

z
, m"m

y
#jm

z
.

o, G and E are the density, shear modulus and Young's modulus respectively. A,
I
d
and I

p
are the area, diametral and polar area moments of inertia respectively, and

k is the shape factor that is dependent on the cross-sectional shape (for example,
9/10 for circular cross-section). X is the rotational speed.

Equation (1) can be rewritten, in a state-space form for the spatial co-ordinate x,
as
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Laplace transformation of equation (2) with respect to time, with zero initial
conditions, leads to
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Here, s is the Laplace variable for time and the capital letters, i.e., P, U, F and
M denote Laplace transforms for the corresponding lower-case letters. Equation (3)
can be represented, in a simple matrix form, as follows:

LW(x, s)
Lx

"B (s)W(x, s), (4)

where
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Here

a"oI
d
s2!jXoI

p
s, b"

1
EI

d

, c"oAs2, d"
1

kAG
.

Laplace transformation of equation (4) for the spatial co-ordinate x with
consideration of boundary values at x"0 may yield

WI (j, s)"[jI!B]~1W(0, s). (5)

Here, j is the Laplace variable for the spatial co-ordinate and WI (j, s) represents the
Laplace transform for W(x, j). One can resolve [jI!B]~1 in equation (5) to
obtain each element as shown in Appendix A.

With the help of equations (A1) and (A2) in Appendix A inverse Laplace
transformation of equation (5) for x gives the following:

W (x, s)"C(x, s)W(0, s), (6)

where C(x, s) is given in equation (A3). Here, consider a uniform shaft element as
shown in Figure 2. In addition, let us make use of the sign conventions as indicated in
Figure 2 for the nodal values of the elements at x"0 and l. Substitution of the nodal
values into equation (6) and rearrangement of the variables in equation (6) yield
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Figure 2. A uniform shaft element and the sign conventions for the nodal values.
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and D, d
i
, i"1, 2,2, 6 are presented in equation (A5). Equation (8) is the element

dynamic matrix in the s domain, which represents an exact relationship between
nodal forces and nodal displacements for the shaft element. As shown in equation
(8), mass and sti!ness matrices cannot be explicitly separated out of the exact
dynamic element matrix. Conventional discretization methods such as FEM and
TMM give mass and sti!ness matrices, which eventually result in approximated second
order polynomials of s. Equation (7) appears to have "nite d.o.f.s. However, the
transcendental functions in equation (8) can be rewritten as in"nite order polynomials
of s, implying that the system still retains a nature of in"nite d.o.f.s system.

For taking account of the anisotropy in rotor-bearing systems, there is a need to
deal with the complex conjugate partial di!erential equations. For the complex
conjugate partial di!erential equations of motion, the parameters in equation (4)
should be replaced as follows:

aL "oI
d
s2#jXoI

p
s, bK "b"
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d

, cL"c"oAs2, dK"d"
1

kAG
,

where the ) denotes the parameters for the conjugate equations. Then, the
conjugate element dynamic equation can be written as
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and aL 2, bK 2, DK , and dK
i
, i"1, 2,2 , 6, are given in equations (A6) and (A7). The hat )

for the variables in equation (9) denotes Laplace transforms for the corresponding
variables. It should be noted here that the Laplace transform for the complex
conjugate of a complex variable does not necessarily be complex conjugate of the
Laplace transform for the complex variable.

2.2. MODELLING OF DISK ELEMENT

The equations of motion for a rigid disk and the conjugate equations can be
written as

mdpK"f, Jd
d
/G!jXJd

d
/Q "m, (11a)

mdpN K"fM , Jd
d
/M G#jXJd/M Q "mN , (11b)
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where (!) denotes the complex conjugate. Applying Laplace transformation to
equations (11a) and (11b) provides the following equation of motion, in the
s domain, for the disk element
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2.3. MODELLING OF BEARING ELEMENT

The equation of motion for a bearing element and the conjugate equation can be
written as
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The complex sti!ness and damping coe$cients of bearing element are de"ned as
[13]
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The Laplace transformation for equation (13) with respect to time leads to
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2.4. ASSEMBLING PROCEDURE FOR THE GLOBAL SYSTEM DYNAMIC MATRIX

The assembling procedure for the global system dynamic matrix can be
summarized as follows: "rst, decompose the rotor shaft system into uniform,
distributed parameter shaft elements and discrete disk or bearing elements. Second,
make an element dynamic matrix for each of the shaft, disk and bearing elements
with equations (7), (9), (12) and (14). Third, assemble the element dynamic matrices
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in the same manner that the global matrices are constructed in FEM. This
procedure may result in the following system matrix equation:

G
F
FK H"D (s) G

Q
QK H , (15)

where Q and QK are Laplace transforms of the global displacement vector and the
complex conjugate vector respectively, and F and FK are Laplace transforms of the
corresponding force vectors:

D (s)"C
Ds#Dd#Db

f
DK b

b

Db
b

DK s#DK d#DK b
f
D

and the subsidiary system dynamic matrices, Di, DK , i"s, d, b, are assembled
matrices associated with shaft, disk and bearing, respectively. The transfer function
matrix is de"ned by the inverse of D (s) and, in consequence, the frequency response
function matrix might be computed as

H( ju)"MD( ju)N~1, (16)

where u is the excitation frequency. From equation (15), the eigenvalue problem is
de"ned as

D (s);"0. (17)

Eigenvalues can be determined by "nding roots that satisfy detMD(s)N"0. Once the
eigenvalues are determined, the corresponding eigenvectors may be easily
determined by substituting the eigenvalues into equation (17). On the other hand,
the time response cannot be calculated directly but must be calculated indirectly by
applying the convolution integral with impulse response functions attained
through inverse Fourier transformation of the frequency response functions.

3. NUMERICAL ANALYSIS AND DISCUSSION

Three examples are taken to show the adequacy and applicability of the
proposed method. In the "rst example, the proposed method is compared with
FEM to validate the proposed method. In the second example, a parametric study
for the e!ect of shaft length variation of a rotor system that consists of two shafts
with di!erent diameters is demonstrated to show the usefulness of the method in
design. In the "nal example, an unbalance response analysis is performed to show
the applicability of the proposed method for a more complicated multi-stepped
rotor system.

3.1. NUMERICAL EXAMPLE 1

In Figure 3 is shown the numerical model, which is composed of a uniform shaft
of 1)2 m and 2)5 cm respectively, in length and diameter, and two identical bearings



Figure 3. Numerical model 1.
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at both ends of the shaft. The bearing sti!ness and damping coe$cients are
k
f
"12]105 N/m, k

b
"0, c

f
"6 Ns/m, and c

b
"0. In this example, the proposed

method is compared with the FEM from reference [7]. The "nite element model in
this case also includes gyroscopic e!ect, rotary inertia and shear deformation. In
the proposed method, only one element is taken to model the shaft, while in the
FEM, several di!erent numbers of elements are taken to notice the di!erence.
Frequency response functions (FRFs) by the proposed method and the FEM are
compared in Figure 4. The FEM always generates peak frequencies (natural
frequencies) located higher than those from the proposed method. In particular,
these peak frequencies converge to the peak frequencies from the proposed method
as the number of elements is increased. This implies that the proposed method
provides exact solutions. Eigenvalues computed from the proposed method and the
FEM are also compared in Table 1. From Figure 4 and Table 1, it can be concluded
that a uniform shaft can be modelled by one exact element matrix proposed in this
paper without causing any error.

3.2. NUMERICAL EXAMPLE 2

In this example, a simple parametric study for a shaft-disk-bearing system is
performed so as to show that the proposed method is very useful for changing the
dimensions or properties of an element. Due to the fact that a uniform shaft section
can be modelled with only one element regardless of the size of the element, the
proposed method allows object-oriented programming. The schematic drawing for
the rotor-bearing system considered in this example is shown in Figure 5. The
detailed speci"cations of the rotor-bearing system are given in Table 2. The
rotational speed of the rotor is set to 6000 r.p.m. Two shaft elements are used for
modelling.

In Figure 6 is shown a typical FRF for the system with ¸
1
/¸

2
"1)0 when

measured and excited at the left and right bearing positions respectively. First
forward and backward natural frequencies with changing the length ratio between
two elements, of which the diameters are di!erent from each other, are shown in
Figure 7. Obviously, the gyroscopic e!ect and bearing anisotropy in the
rotor-bearing system cause separation of two natural frequencies. Since the
proposed method, unlike the FEM, does not require re-meshing the system model
every time the length ratio is changed, the aforementioned calculation can be
readily performed along with varying only the element lengths of the model.



Figure 4. Driving point frequency response functions at node 1 for numerical model 1: (a) wide
frequency range, (b) frequency region around the 4th mode. ***1 Element (proposed); - - - -
2 element (FEM); - . - . - 4 element (FEM) - .. - .. - 8 element (FEM).
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3.3. NUMERICAL EXAMPLE 3

The present example deals with the multi-stepped rotor-bearing system
exempli"ed in reference [6] in order to show the applicability of the proposed
method to general rotor-bearing systems. Figure 8 is the cross-sectional drawing
along the longitudinal axis of the shaft. The speci"cations of the rotor-bearing
system are described in Table 3. In this case, 14 uniform elements are taken to
model the multi-stepped shaft. Two di!erent bearing sets are considered: one is



TABLE 1

Comparisons of eignevalues computed by the proposed method and the FEM
(eigenvalues j

k
"p

k
#ju

k
, rad/s)

p
k
/u

k

FEM FEM FEM Proposed method
Mode 4 elements 8 elements 12 elements 1 element

1st B* !0)00746/206)54 !0)00746/206)49 !0)00746/206)49 !0)00746/206)49
1st F* !0)00749/206)64 !0)00748/206)63 !0)00748/206)63 !0)00748/206)63

2nd B !0)3912/741)10 !0)3867/738)83 !0)3864/738)70 !0)3863/738)65
2nd F !0)3921/741)48 !0)3876/739)21 !0)3873/739)07 !0)3872/739)03

3rd B !2)7273/1393)65 !2)6102/1379)17 !2)6034/1378)28 !2)6010/1377)97
3rd F !2)7294/1394)25 !2)6123/1379)77 !2)6055/1378)88 !2)6032/1378)57

*B and F denote backward and forward modes respectively.

Figure 5. Numerical mode 2.
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isotropic and the other is anisotropic. In Figure 9 are shown the unbalance
responses at node 4 with the unbalance as described in Table 3. For the
isotropic case, the whirl becomes a circle in that the minor and major whirl radii
are identical. However, in the case of anisotropic bearings, the whirl becomes
elliptic. The forward and backward critical speeds are clearly observed in this
case.



TABLE 2

Speci,cation of numerical model 2

Length (m) 1)20
Diameter (cm) d

1
"2)5

d
2
"4

Shaft Young's modulus (GN/m2) 200
Density (kg/m3) 8000

mass( kg) 20
Disk Polar moment of inertia (kg m2) 0)163

Diametral moment of inertia (kg m2) 0)085

Sti!ness k
yy

(MN/m) 20
k
yz

(MN/m) !1)5
k
zy

(MN/m) !1)5
Bearing k

zz
(MN/m) 25

(2 identical) c
yy

(N s/m) 60
Damping c

yz
(N s/m) 0

c
zy

(N s/m) 0
c
zz

(N s/m) 70

Figure 6. Typical FRFs measured and excited at nodes 1 and 3, respectively for numerical model
2 with ¸

1
/¸

2
"1)0. *** forward; - - - - - backward.
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4. CONCLUDING REMARKS

In this study, an exact dynamic matrix in Laplace domain for a Timoshenko
shaft element is derived. The essence of the derivation procedure is to apply Laplace



Figure 7. First two natural frequencies with ¸
1
/¸

2
varied for numerical model 2.

Figure 8. Numerical model 3.
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transformation, twice with respect to time and also spatial co-ordinate, to a spatial
state equation of the Timoshenko shaft model. Then inverse Laplace
transformation of the resulting equation with respect to the spatial co-ordinate and
application of the boundary values comes up with the exact dynamic matrix for
a uniform shaft element. The exact dynamic matrix for the shaft element is used
together with the other two element matrices for rigid disk and bearing so as to
construct the global system dynamic matrix of a rotor-bearing system. Then, the
dynamic analysis procedure to obtain eigensolutions, FRFs and unbalance
responses is straightforward although the eigensolution analysis necessitates
a special algorithm other than that for the conventional discrete system. Three



TABLE 3

Multi-stepped rotor con,guration data for numerical model 3

Component
Element

no. Length (cm)
Outer radius

(cm)
Inner radius

(cm)

Shaft 1 1)27 0)51 0)0
2 3)81 1)02 0)0
3 2)54 0)76 0)0
4 2)54 2)03 0)0
5 0)51 3)03 0)0
6 0)76 3)03 1)52
7 1)27 2)54 1)78
8 0)76 2)54 0)0
9 5)59 1)27 0)0

10 7)62 1)52 0)0
11 3)81 1)27 0)0
12 1)02 3)81 0)0
13 3)04 2)03 0)0
14 1)27 2)03 1)52

Mass moment of intertia (kg m2)

Disk Node Mass (kg) Polar Diametral

4 1)401 0)0020 0)0136

Node c
yy

(N s/m) c
yz

(N s/m) c
zy

(N s/m) c
zz

(N s/m) Case

Bearing 9, 11 1752 0 0 1752 1
(2 identical) 1752 0 0 1752 2

k
yy

(N/m) k
yz

(N/m) k
zy

(N/m) k
zz

(N/m) Case
4)378]107 0 0 4)378]107 1
3)503]107 !8)756]106 !8)756]106 3)503]107 2

Unbalance Node Magnitude (g mm)
4 889)635
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numerical examples are provided to show the adequacy and applicability of the
proposed method.

The proposed method provides an exact model with "nite matrix size for
multi-stepped, distributed parameter rotor-bearing systems. Moreover, a drastic
reduction in the size of the model is anticipated due to the fact that any uniform
segment of the shaft can be modelled by one shaft element without causing any
error. The proposed method also allows dynamic analysis of the system without
any re-meshing process even in the case when shaft dimensions are changed. It is
worthwhile to mention that the proposed method can be incorporated with the
FEM for modelling and analysis of complicated systems.



Figure 9. Unbalance response at node 4, normalized by eccentricity (e) for numerical model 3.**
Isotropic; ) ) ) ) ) ) ) orthotropic (major), - . - . - orthotropic (minor).
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APPENDIX A: EQUATIONS FOR A TIMOSHENKO SHAFT ELEMENT

[jI!B]~1"
1

(j2!a2) (j2!b2)

]

j(j2!ab) j2 !dj2#b(ad#1) bj

!bc j(j2!cd) bj b (j2!cd)

!c(j2!ab) !cj j (j2!cd) !bc

!cj aj2!c (ad#1) j2 j (j2!cd)

, (A1)

a2"1
2
M(ab#cd)#J(ab#cd)2!4(abcd#bc)N ,

b2"1
2
M(ab#cd)!J(ab#cd)2!4(abcd#bc)N , (A2)

C(x, s)"

f
3
!abf

1
f
2

!d f
2
#(abd#b) f

b
bf

1
!bc f

0
f
3
!cdf

1
bf

1
b f

2
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0
!cf

2
#abc f

0
!c f

1
f
3
!ab f

1
!bc f

0
!c f

1
a f

2
!(acd#c) f

0
f
2

f
3
!cd f

1

,

(A3)

f
0
"¸~1 A

1
(j2!a2) (j2!b2)B"

1
a2!b2 A

1
a

sinh ax!
1
b

sinh bxB .

f"¸~1 A
j

(j2!a2) (j2!b2)B"
1

a2!b2
(cosh ax!cosh bx) ,

f
2
"¸~1 A

j
(j2!a2) (j2!b2)B"

1
a2!b2

(a sinh ax!b sinh bx) ,

f
3
"¸~1 A

j3

(j2!a2) (j2!b2)B"
1

a2!b2
(a2 cosh ax!b2 cosh bx) , (A4)

D"2b(1!cosh al cosh bl)#
ab
c

Mf2#g2N sinh al sinh bl,
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d
1
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d
2
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(ab!cd)
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d
3
"
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Mg sinh al cosh bl!f sinh bl cosh alN,

d
4
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d
5
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d
6
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a
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(cd!b2)
b

, (A5)

DK "2b(1!cosh aL l cosh bK l)#
aL bK
c

Mf) 2#gL 2N sinh aL l sinh bK l,

dK
1
"!fK sinh aL l cosh bK l#gLL sinh bK l cosh aL l,
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2
"

(bK fK#aL gL )
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sinh aL l sinh bK l!
(aL b!cd)

aL 2!bK 2
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dK
3
"

aL bK
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dK
4
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dK
5
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dK
6
"
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bK 2"1
2
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